How to generate reliable and predictive CoMFA models.

نویسندگان

  • Lei Zhang
  • Keng-Chang Tsai
  • Lupei Du
  • Hao Fang
  • Minyong Li
  • Wenfang Xu
چکیده

Comparative Molecular Field Analysis (CoMFA) is a mainstream and down-to-earth 3D QSAR technique in the coverage of drug discovery and development. Even though CoMFA is remarkable for high predictive capacity, the intrinsic data-dependent characteristic still makes this methodology certainly be handicapped by noise. It's well known that the default settings in CoMFA can bring about predictive QSAR models, in the meanwhile optimized parameters was proven to provide more predictive results. Accordingly, so far numerous endeavors have been accomplished to ameliorate the CoMFA model's robustness and predictive accuracy by considering various factors, including molecular conformation and alignment, field descriptors and grid spacing. Herein, we would like to make a comprehensive survey of the conceivable descriptors and their contribution to the CoMFA model's predictive ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D QSAR Studies, Pharmacophore Modeling and Virtual Screening on a Series of Steroidal Aromatase Inhibitors

Aromatase inhibitors are the most important targets in treatment of estrogen-dependent cancers. In order to search for potent steroidal aromatase inhibitors (SAIs) with lower side effects and overcome cellular resistance, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of SAIs to build 3D QSAR models. The rel...

متن کامل

3D-QSAR and docking analysis on a series of multi-cyclin-dependent kinase inhibitors using CoMFA, and CoMSIA

A series of 42 Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-cyclin-dependent kinaseinhibitors regarded as promising antitumor agents to complement the existing therapies, wassubjected to a three-dimensional quantitative activity relationship (3D QSAR). Different QSARmethods, comparative molecular field analysis (CoMFA), CoMFA region focusing, andcomparative molecular similarity indices an...

متن کامل

Docking based 3D-QSAR studies applied at the BRAF inhibitors to understand the binding mechanism

B-RaF is a member of the RAF family of serine/threonine kinases involved in the regulation of cell growth, differentiation, and proliferation. It forms part of a conserved apoptosis signals through the RAS-RAF-MAPK pathway. As an important target of the cancer treatment B-Raf has more potential for researcher. The discovery of the B-RAF mutation [1] has elevated expectation for targeted therapy...

متن کامل

CoMFA -3D QSAR APPROCH IN DRUG DESIGN

Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in certain positions of the drug molecules. The detailed discussion of the present state of the art should enable scientists to further develop a...

متن کامل

Improvement of the Prediction Power of the CoMFA and CoMSIA Models on Histamine H3 Antagonists by Different Variable Selection Methods

The aim of this study is to enhance the predictivity power of CoMFA and CoMSIA models by means of different variable selection algorithms. The genetic algorithm (GA), successive projection algorithm (SPA), stepwise multiple linear regression (SW-MLR), and the enhanced replacement method (ERM) were used and tested as variable selection algorithms. Then, the selected variables were used to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current medicinal chemistry

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2011